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We discuss a generalization of the improved integral method of lines for the 
solution of the heat equation with boundary conditions of the second and third 
kinds. 

An improved integral method of lines was given in [i] for the solution of the heat 
equation with:boundary conditions of the first kind [2]. THe improvement over the original 
method was obtained by integrating the heat equation along only part of partitioning interval 
with a certain weighting coefficient ~, rather than along the entire interval. An additional 
algebraic equation was derived for thiscoefficient and the accuracy of the approximate solu- 
tion was increased by this device by no less than two orders of magnitude; in certain cases 
the approximate solution coincides with the exact solution of the problem. When ~ = 0 this 
method is completely equivalent to the spline method of [3], while for ~= = 0.5 it reduces 
to the improved method of lines [4], and for ~ = 1 it reduces to the integral method of lines 
[ 5 ] .  

We extend the improved integral method of lines to the case of the heat equation with 
boundary conditions of the second and third kinds. The high intrinsic accuracy of this method 
allows one to reduce significantly the number of partitions. It is shown that for certain 
examples the approximate solution reduces to the exact one when the interval is partitioned 
into two arbitrary unequal parts. 

Let it be required to find the solution of the heat equation subject to boundary condi- 
tions of the third kind: 

Ut=a~Uxx+f(x.  t) ( O < x < l ,  t>O), (1) 
U(x, O) = .(x) (O<x<~ l), (2)  

[l%Ux + vlUlx=o = ,1 (t), [l%U~ + w U I ~ ,  = r (t). (3 )  

An approximate solution of the problem will be sought in the form of a polynomial 

2 

U(x, t ) . ~ ( x ,  xk, t )=  ]~A~(x--xff, (4) 

constructed on the uniform intervals 

A~ = 6 = 1/(N + 1). 

For simplicity we put ~ = i. Following the improved integral method of lines [i] we inte- 
grate (i) on the interval [x k - ~k 6, x k + ~k 6] using the approximate solution (4), where 
o k is a weightin~ coefficient. We thereby obtain a system of N linear ordinary differential 
equations for A0 K and Aak~ 

+ = + A~ (5) 
3 

In order to solve this system of equations we rewrite the initial and boundary condi- 
tions in the form 

(xk, O) = U (xh, 0), (6) 

p ,~(O,  x,, t ) + w ~ ( O ,  xa, t) =**(t), ~2~(1 ,  xm t ) + ? ~ ( 1 ,  xm 0 =r (7) 
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Equations (6) and (7) must be supplemented by the continuity condition on the temperature on 
the boundaries of the intervals 

~(xk___8, xh, t) = ~ ( x ~ •  x~• 0. (8 )  

S u b s t i t u t i o n  of  the  approximate  s o l u t i o n  (4) into (7) and (8) l eads  to the  following 
matrix equation of order 2N for Az k and A2k: 

By= Z, (~) 
where 

y=[A~, A~ . . . . .  Af, A~] T, Z={,~--A~, A~--A~ . . . . .  $~--A~] r. ( i0 )  

Solving (9), we f ind expressions for A~ k and A2 k in terms of A0 k, Cz and r We pre- 

sent the recursion re la t ions for the A2 k, since the Az k do not appear in (5): 

A 1 __- - -  1~1{] - -  Aol (~1 - -  2 2 ~ 6 )  + Ao ~ ([~ - -  7 1 8 )  

A2~ _ Ao ~ - '  (~2 + 7"-6)--A0~(~"- + 2y"-6) + ~"-8 
-- ' 6 ~ (313"- + 27..6) ' 

A~ ----- (A~o - l  --2A~ + A~o+~)/262, k = 2, N - -  1. 

(ll) 

With the help of (ii), Eq. 

Ao ~ CAo + D~ + E~ + ~[, 
where C, D, E, and 0 are variable matrices in t. 

An analytical solution of (12) and (6) is written as 

t 

Ao = A (t, 0) ~ + ~ A (t, 0) A- '  (T, 0) (D,  + E~ + ~[) d~. 
0 

(5) can then be transformed to a matrix equation of order N: 

(12) 

(13) 

It remains to find the weighting coefficient ~k- As in [I], we require that the approxi- 
mate solution (4) satisfy Eq. (i) at t = 0 and x = x k (where the initial condition U(xk, 0) = 
~(x k) is taken into account): 

l ~  (0) = %~ (xh) + / (xk, 0), k = 1, N. (14 )  

Substituting A0 k from (14) into (12) at t = 0, we obtain the following equation for 
the coefficient ak: 

C~ + m~ + f~ + 4[ = ~x + [- (15) 

We find a k from (15) and then substitute into (13). Finally we thereby obtain the improved 
approximate solution at the points x k. 

When YI = Y2 = 0 the problem involves boundary conditions of the second kind. The 
reasoning in this case is similar to that given above. 

The high intrinsic accuracy of the improved integral method of lines means that we can 
partition the entire interval up into a small number of parts. We show this for the case of 
boundary conditions of the second kind. A single partition point is used, which divides the 
whole interval into two equal or unequal parts. 

Suppose it is required to find the time dependence of the temperature at a certain point 
x k = A. Using (4) we integrate (i) with respect to x on the interval [h -- ~A, A + ~(i -- A)]. 
As a result we obtain a linear ordinary differential equation for the coefficients At, A m , and 
A0: 

Ao + z-z-A1(1 --2A) + -~-(1 --3A + 3A~) A"-=2A~+ -~ A t  ~ [(x, t)dx. (16) 

For simplicity we put f(x, t) = 0. Using (6) and (7) with Yz = Y2 = 0 we find the coeffi- 
cients A I and A 2 in terms of A0 and ~: 
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A1 = (,1132 (I -- A) + I~l,=A)/t3d32, A2 = (*~.1~1 - -  ,1~2)/21311%. ( 1 7 )  

Substituting (17) into (16) we obtain a first-order differential equation for h0: 

Ao = L ( ' i ,  *2, 1~1, ~2, G~, A). ( 1 8 )  

An analytical solution for (18) has theform 

t 

Ao = Ao (o) + I Ld . (19) 

In order to determine ~ we use (14) and (18) at t = 0. After substituting ~ into (19), 
we find an improved approximate solution at the point A. 

The discussion is analogous for the determination of the temperature at the point A 
when boundary conditions of the third kind are specified. 

In certain cases the method gives the exact solution of the problem. For example, this 
occurs in the solution of the following boundary-value problem for a single point A: 

Ut = U ~ ,  U(x,  O) = s in~x,  

U~ (0, t) = e exp ( - -  e~t), U~ (1, t) = ~ cos ~ exp ( ~  e~t). 

Here the approximate solution reduces to the exact solution, which can be represented in the 
form: 

U = exp ( - -  ~ t )  sin~A. 

When boundary conditions of the third kind are specified, we have for the same point A: 

Ut ---- U ~ .  U (x, O) = sin ~ox, 

[U~ + U]~=o = o~ exp ( - -  ~o~l), [U,~ + U].=I --- (~o cos o~ + sin co) exp ( - -  co~-t), 

and here the solution also coincides with the exact solution and has the form: 

U = e x p ( - - ~ t ) s i n ~ A .  

NOTATION 

x, linear coordinate; t, time; a, thermal diffusivity; f(x, t), heat source; U, tempera- 
ture; Ax, position of the nodal point along the X axis; N, number of partitions along the X 
axis; ~i, YI, 62, 72, given functions of time; ~(t, 0), fundamental solution matrix of the 
linear homogeneous system of differential equations. 

I. 

2. 

3. 

4. 
5. 

6. 

LITERATURE CITED 

V. I. Ryndyuk and A. D. Chernyshov, "On an improved integral method of lines for the 
solution of the heat equation," in: VINITI, No. 4897 (July i0, 1984). 
A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], 4th 
ed., Moscow (1977). 
I. A. Ii'in and A. T. Luk'yanov, On Questions of Mathematics and Mechanics (Kaz. Univ.), 
Issue 2, 80-86 (1973). 
I. S. Berezin and N. P. Zhidkov, Computational Methods [in Russian], Kiev (1977). 
V. I. Ryndyuk and A. D. Chernyshov, "On an approximate method of solving the heat 
equation," in VINITI, No. 6259 (December 21, 1982). 
V. N. Fadeeva, Trans. V. A. Steklov Math. Inst., 2_88, 73-103 (1949). 

229 


